1.0 GENERAL SPECIFICATIONS

1.1. BEFORE SUBMITTING TENDER FOR THIS WORK, EXAMINE THE SITE, LOCAL SERVICES AND LOCAL CONDITIONS, PROJECT DRAWINGS, LOCATION OF EXISTING EQUIPMENT AND SPACE ALLOWANCES TO ASCERTAIN THAT THE WORK CAN BE SATISFACTORILY CARRIED OUT AS SHOWN ON THESE DRAWINGS AND AS HEREIN SPECIFIED.

1.2. THESE DRAWINGS ARE FOR PERMIT, AND FOR PRICING, AND MUST BE ADHERED TO FOR INSTALLATION. IF CONTRACTOR WISHES TO ALTER DRAWINGS, THEN CONTRACTOR IS RESPONSIBLE FOR OBTAINING RE-APPROVALS.

1.3. CONTRACTOR TO SUPPLY AND INSTALL A COMPLETE AND FULLY OPERATIONAL AUTOMATIC SPRINKLER SYSTEM AS SHOWN ON THE DRAWINGS AND AS INDICATED IN THE SPECIFICATIONS AND CONFORMING TO N.F.P.A. REQUIREMENTS, O.B.C. REQUIREMENTS AND THE REQUIREMENTS OF THE LOCAL AUTHORITIES.

1.4. ALL WORK SHALL BE DONE IN ACCORDANCE WITH ALL CODES, STANDARDS BY-LAWS AND AUTHORITIES HAVING JURISDICTION.

1.5. ALL MATERIALS USED IN THE INSTALLATION OF THE SPRINKLER SYSTEM SHALL LISTED.

1.6. PROVIDE SPARE SPRINKLER HEADS AND WRENCH IN A METAL CABINET, MOUNTED ON THE WALL NEAR THE MAIN SPRINKLER VALVE HEADER. AMOUNT AS PER N.F.P.A. STANDARD # 13.

1.7. UPON COMPLETION OF THE INSTALLATION, THE CONTRACTOR SHALL TEST THE SYSTEM AND SUBMIT TO THE ENGINEER COMPLETED CONTRACTORS TEST CERTIFICATES STATING THAT THE SYSTEMS HAVE BEEN INSTALLED, TESTED AND APPROVED BY THE AUTHORITIES HAVING JURISDICTION IN ACCORDANCE WITH N.F.P.A.#13, LATEST EDITION.

1.8. RECORD AS-BUILT" DRAWINGS: BE RESPONSIBLE FOR CLEARLY MARKING, AS THE JOB PROGRESSES, ALL CHANGES AND DEVIATIONS FROM THE ROUTING OF SERVICES AND THE LOCATION OF EQUIPMENT SHOWN ON THE CONTRACT DOCUMENTS ON A BOUND SET OF WHITE PRINTS. KEEP THE PRINTS AVAILABLE AT THE SITE FOR PERIODIC INSPECTION THROUGHOUT THE DURATION OF THE WORK. NOTE THAT MARKED-UP WHITE PRINTS SHALL INCORPORATE ALL REVISIONS MADE BY CHANGE ORDERS, ADDENDA, FIELD INSTRUCTION. ETC. HAND THE AS-BUILT DRAWINGS TO THE ENGINEER AT THE END OF THE PROJECT.

1.9. THE DRAWINGS AND SPECIFICATIONS ARE INTENDED TO BE CO-OPERATIVE. PERFORM ALL WORK WHICH IS SHOWN, SPECIFIED OR REASONABLY IMPLIED ON THE DRAWINGS, BUT NOT MENTIONED IN THE SPECIFICATIONS OR VICE-VERSA, AS THOUGH FULLY COVERED BY BOTH.

1.10. THE CONTRACTOR SHALL ASSUME FULL RESPONSIBILITY FOR THE LAYOUT OF WORK AND FOR ANY DAMAGE CAUSED TO THE PROPERTY OF THE OWNER OR OTHER TRADES THROUGH THE IMPROPER LOCATION OF MATERIALS, EQUIPMENT, OR CARRYING OUT

1.12. PROVIDE PIPE HANGERS OR SUPPORTS ON ALL PIPING. TRAPEZE HANGER ARE TO BE PROVIDED AS REQUIRED

1.13.NO INSTALLATION SHALL BE CONCEALED OR RENDERED INACCESSIBLE BY DRYWALL. BOARDING OR OTHER BUILDING CONSTRUCTION, UNTIL IT HAS BEEN INSPECTED BY THE ENGINEER AND LOCAL AUTHORITIES HAVING JURISDICTION AND FOUND TO CONFORM TO CONTRACT DOCUMENT AND REGULATIONS. WHEN REQUESTING AN INSPECTION, THE CONTRACTOR SHALL PROVIDE A MINIMUM OF THREE (3) WORKING DAYS NOTICE IN ADVANCE.

1.14. EXACT LOCATION AND ELEVATION OF PIPING TO BE DETERMINED BY CONTRACTOR TO SUIT SITE CONDITIONS.

1.15. CONTRACTOR TO CO-ORDINATE LOCATION OF SPRINKLERS WITH RESPECT TO OBSTRUCTIONS IN ACCORDANCE WITH NFPA 13

1.16. MINIMUM WALL THICKNESS OF SPRINKLER PIPING TO BE EQUIVALENT TO SCHEDULE 10S. ALL DRY SYSTEM PIPING IS REQUIRED TO BE GALVANIZED

1.17. CONTRACTOR TO INCLUDE FOR AN ADDITIONAL SPRINKLERS FOR BELOW OBSTRUCTIONS

1.18. A COPY OF N.F.P.A STANDARD #25 IS TO BE PROVIDED AND LEFT IN A VISIBLE LOCATION IN THE SPRINKLER ROOM

1.19. PROVIDE PRODUCT DATA SHEETS FPR ALL MATERIAL BEING PROPOSED FOR THE INSTALLATION

1.20. CONTRACTOR MAY USE 1 INCH DIA. FLEXIBLE DROPS WITH A MAXIMUM LENGTH OF 4 FEET WITH A MAXIMUM OF 4, 90 DEGREE BENDS. FLEXIBLE PIPING IF USED IS TO BE STAINLESS STEEL WITH BRAIDED CONNECTION, SINGLE PIECE WELDED CONSTRUCTION WITH NO O-RINGS OR GASKETS, ULC LISTED AND FM APPROVED.

2.0 DESIGN SPECIFICATIONS

THE DESIGN, INSTALLATION, AND COMMISSIONING OF THE FIRE SPRINKLER AND FIRE STANDPIPE SYSTEMS ARE TO BE IN A ACCORDANCE WITH NFPA 13 (2013), AND THE ONTARIO BUILDING CODE (2012),

2.1. THE FIRE SPRINKLER SYSTEM IS TO BE INSTALLED IN ACCORDANCE WITH DRAWINGS:

FP-1 FIRE SPRINKLER GENERAL NOTES SITE PLAN & DETAILS FP-2 FIRE PROTECTION PLAN - BASEMENT LEVEL SPRINKLER PLAN FP-3 FIRE PROTECTION PLAN - GROUND FLOOR SPRINKLER PLAN

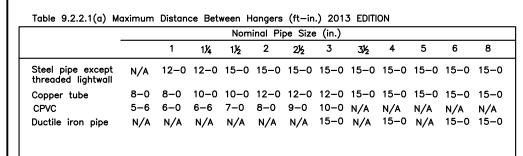
FP-4 FIRE PROTECTION PLAN - ATTIC FLOOR SPRINKLER PLAN

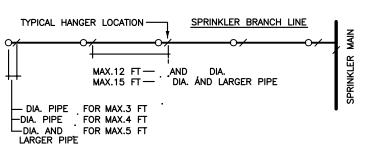
2.2. THE FIRE PROTECTION SYSTEM IS CALCULATED IN ACCORDANCE WITH THE REQUIREMENTS OF NFPA 13

MECHANICAL / ELECTRICAL ROOMS - DESIGN AND CALCULATION IN ACCORDANCE WITH NFPA 13 STANDARD FOR ORDINARY HAZARD GROUP 1 OCCUPANCIES CALCULATED AT A DENSITY OF 0.15 GPM/SQ FT OVER 1500 SQ FT + 250 GPM HOSE ALLOWANCE.

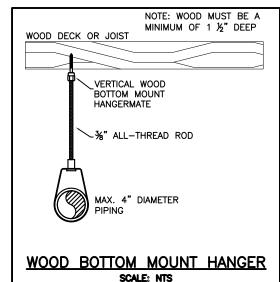
OFFICES, VISITORS CENTRE, ACTIVITY ROOMS AND SIMILAR OCCUPANCIES - DESIGNED AND CALCULATED IN ACCORDANCE WITH THE PROVISIONS OF NFPA 13 FOR LIGHT HAZARD OCCUPANCIES. DENSITY OF 0.1 GPM/SQ FT OVER 900 SQ FT.

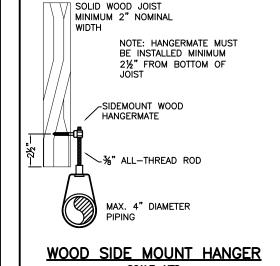
ATTIC - DESIGNED IN ACCORDANCE WITH NFPA 13 STANDARD FOR LIGHT HAZARD OCCUPANCIES AT A

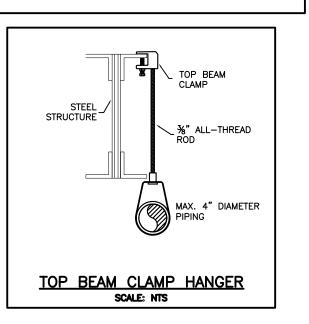

DENSITY OF 0.1 GPM/SQ OVER 2535 sq ft. (INCREASED 30% FOR ROOF SLOPE & 30% FOR DRY SYSTEM) 2.3. PIPING "C FACTORS" USED IN CALCULATIONS ARE IN ACCORDANCE WITH NFPA 13 AS FLOLLOWS:

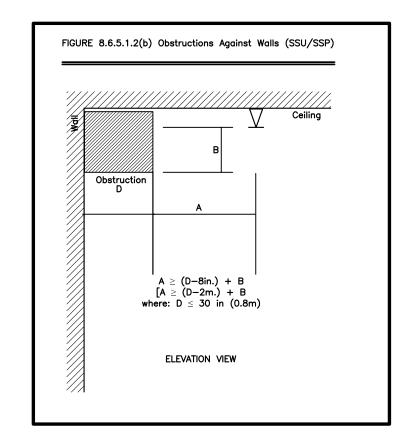

STEEL PIPE - WET SYSTEMS - C=120 STEEL PIPE - DRY SYSTEMS - C=100

3.0 WATER SUPPLY DATA

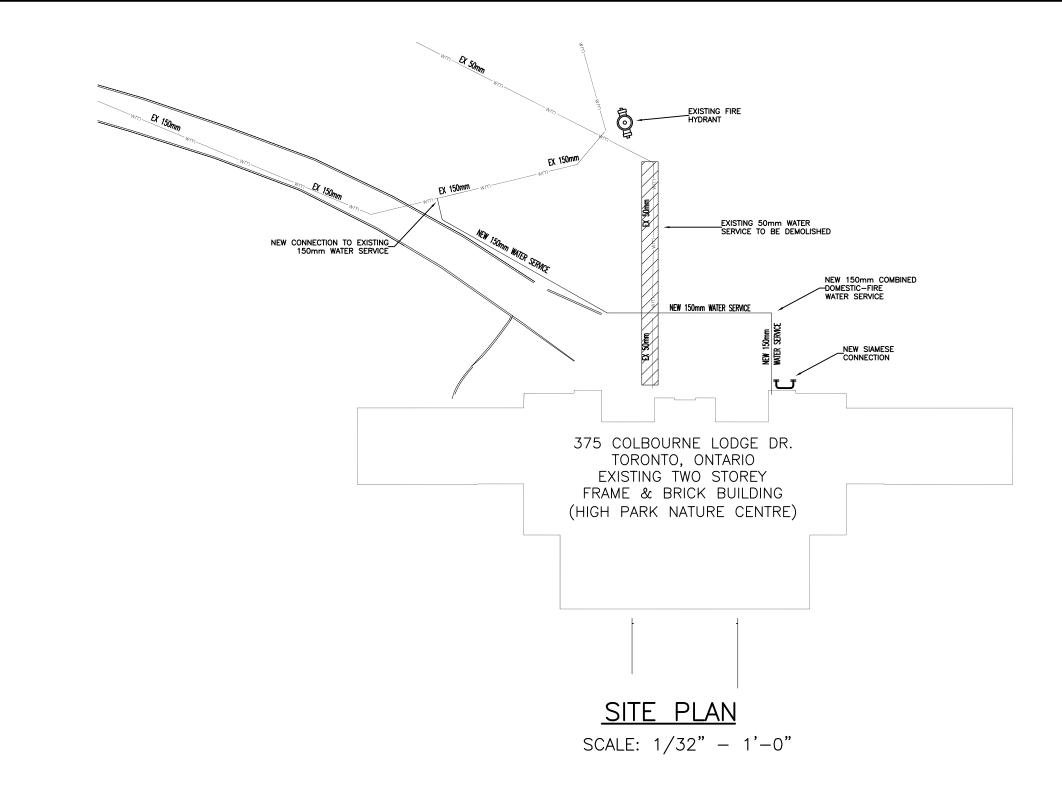

DATE: MAY 2ND 2023 TIME: 9:30AM TEST BY: BRUCE FIRE ENGINEERING STATIC PRESSURE: 67 PSI RESIDUAL 1: 712 GPM @ 32 PSI


RESIDUAL 2: 950 GPM @ 20 PSI





HANGER SPACING DETAIL



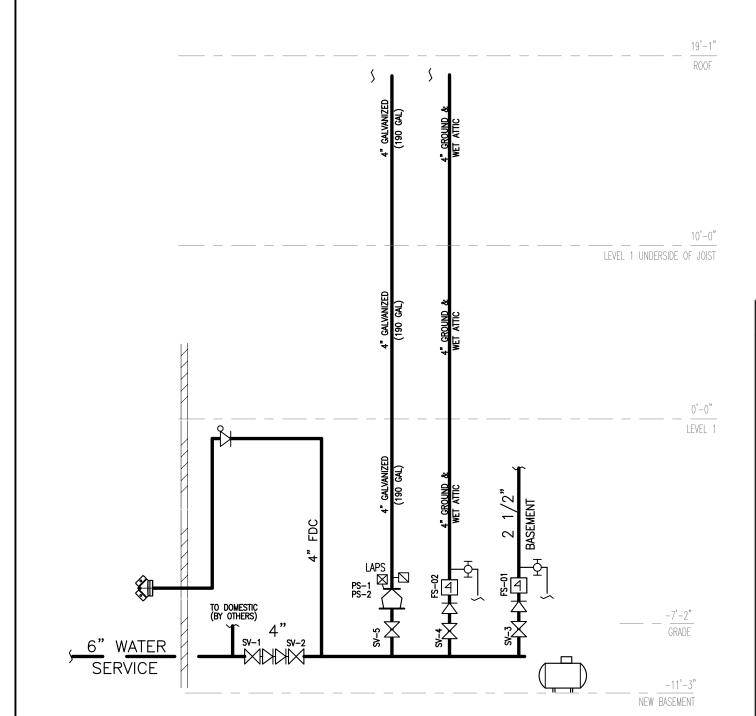
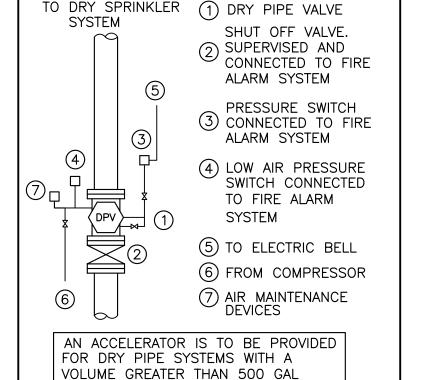
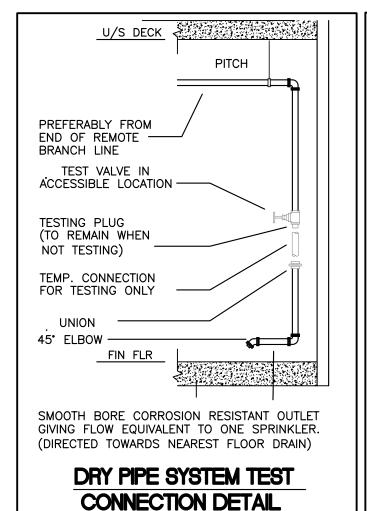


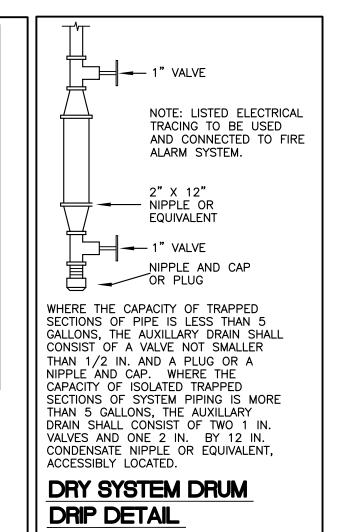
Table 8.6.5.1.2 Positioning of Sp Obstructions to Discharge (SSU/	
Distance from Sprinkler to Side of Obstruction (A)	Maximum Allowable Distance of Deflector above Bottom of Obstruction (B) 1/4in.(mm)3/4
Less than 1 ft 1 ft to less than 1 ft 6 in. 1 ft 6 in. to less than 2 ft 2 ft to less than 2 ft 6 in. 2 ft 6 in. to less than 3 ft 3 ft to less than 3 ft 6 in. 3 ft 6 in. to less than 4 ft 4 ft to less than 4 ft 6 in. 4 ft 6 in. to less than 5 ft 5 ft to less than 5 ft 6 in. 5 ft 6in. to less than 6 ft 6 ft to less than 6 ft 6 ft to less than 7 ft 7 ft to less than 7 ft 6 in.	0 2 1/2 (65) 3 1/2 (90) 5 1/2 (140) 7 1/2 (190) 9 1/2 (240) 12 (300) 14 (350) 16 1/2 (420) 18 (450) 20 (510) 24 (600) 30 (750) 35 (875)
FIGURE 8.6.5.12(a) Positioning of Sprinkler to Avoid Obstructions to Discharge (SSU/SSP)	Ceiling B Obstruction ELEVATION VIEW

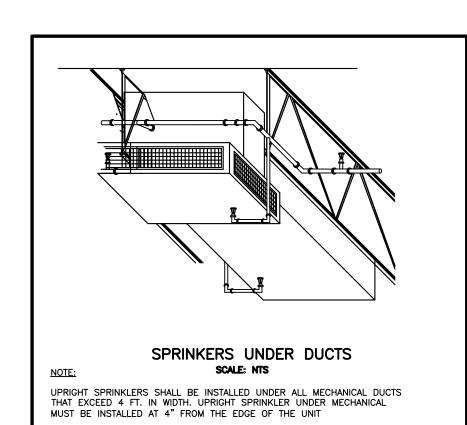



	Volume	of Sy	stem
Diameter (in)	Volume	(gal)	Approx. Len (ft)
1		.74	15
1 1/2		35.20	306
2 1/2		19.68	70
4		131.81	178
Total		187.43	

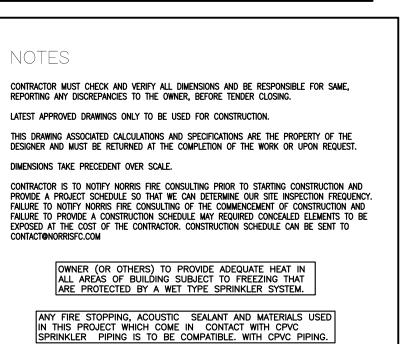
LEGEND
EXISTING DOUBLE CHECK VALVE ASSEMBLY
EXISTING SIAMESE CONNECTION
DRY PIPE VALVE WITH PRESSURE SWITCHES
ISOLATION VALVE WITH TAMPER SWITCH
SWING CHECK VALVE
FLOW SWITCH
$\begin{tabular}{lll} \hline \end{tabular} & {f TEST} & {f AND} & {f DRAIN} & {f VALVE} \\ \hline \end{tabular}$
AIR COMPRESSOR (120V 1/3 HP) SINGLE PHASE

LEGEND	SPRINKL	ER ALARM ZONE SCHEDULE
EXISTING DOUBLE CHECK VALVE ASSEMBLY	DEVICE NUMBER	SERVICE
	FS-01	BASEMENT SPRINKLER FLOW SWITCH
EXISTING SIAMESE CONNECTION	FS-02	GROUND FLOOR SPRINKLER FLOW SWITCH
⊠-□	PS-01	DRY LOW AIR PRESSURE PS
DRY PIPE VALVE WITH PRESSURE SWITCHES	PS-02	DRY WATER FLOW PS
M ISOLATION VALVE WITH	SV-01	BACKFLOW SUCTION
TAMPER SWITCH	SV-02	BACKFLOW DISCHARGE
SWING CHECK VALVE	SV-03	BASEMENT SPRINKLER CONTROL VALVE
	SV-04	GROUND FLOOR SPRINKLER CONTROL VALVE
FLOW SWITCH	SV-05	DRY SYSTEM CONTROL VALVE
TEST AND DRAIN VALVE		
AIR COMPRESSOR (120V 1/3 HP) SINGLE PHASE		
WET SPRINKLER RISER (SHOWN IN PLAN VIEW)		


TYPICAL DRY PIPE VALVE DETAIL



(AS PER NFPA 13)


RISER SCHEMATIC

SCALE: NTS

 -	ΙFΔΓ	O COUNT						
<u> </u>		=STANDARD RESPONSE Q/R=QUICK RESPONS	Έ					
	0	200°F STANDARD COVERAGE Q/R UPRIGHT (K=5.6) 1/2" NPT	22					
_	•	155°F STANDARD COVERAGE Q/R CONCEALED PENDENT (K=5.6) 1/2" NPT	44					
	O 200°F STANDARD COVERAGE Q/R UPRIGHT (K=4.2) 1/2" NPT							
_	■ 200°F STANDARD COVERAGE Q/R HSW (K=5.6) 1/2" NPT							
_								
			_					

SUBMITTALS

NO	DATE	DESCRIPTION	DWN	CH'D
1	NOV 10/2024	ISSUED FOR COORDINATION	MT	MBN
2	DEC 07/2024	ISSUED FOR CLIENT REVIEW	MT	MBN
3	DEC 19/2024	ISSUED FOR PERMIT	MT	MBN
4	J/N 6/2025	RE-ISSUED FOR PERMIT	MT	MBN

Norris Fire Consulting Inc

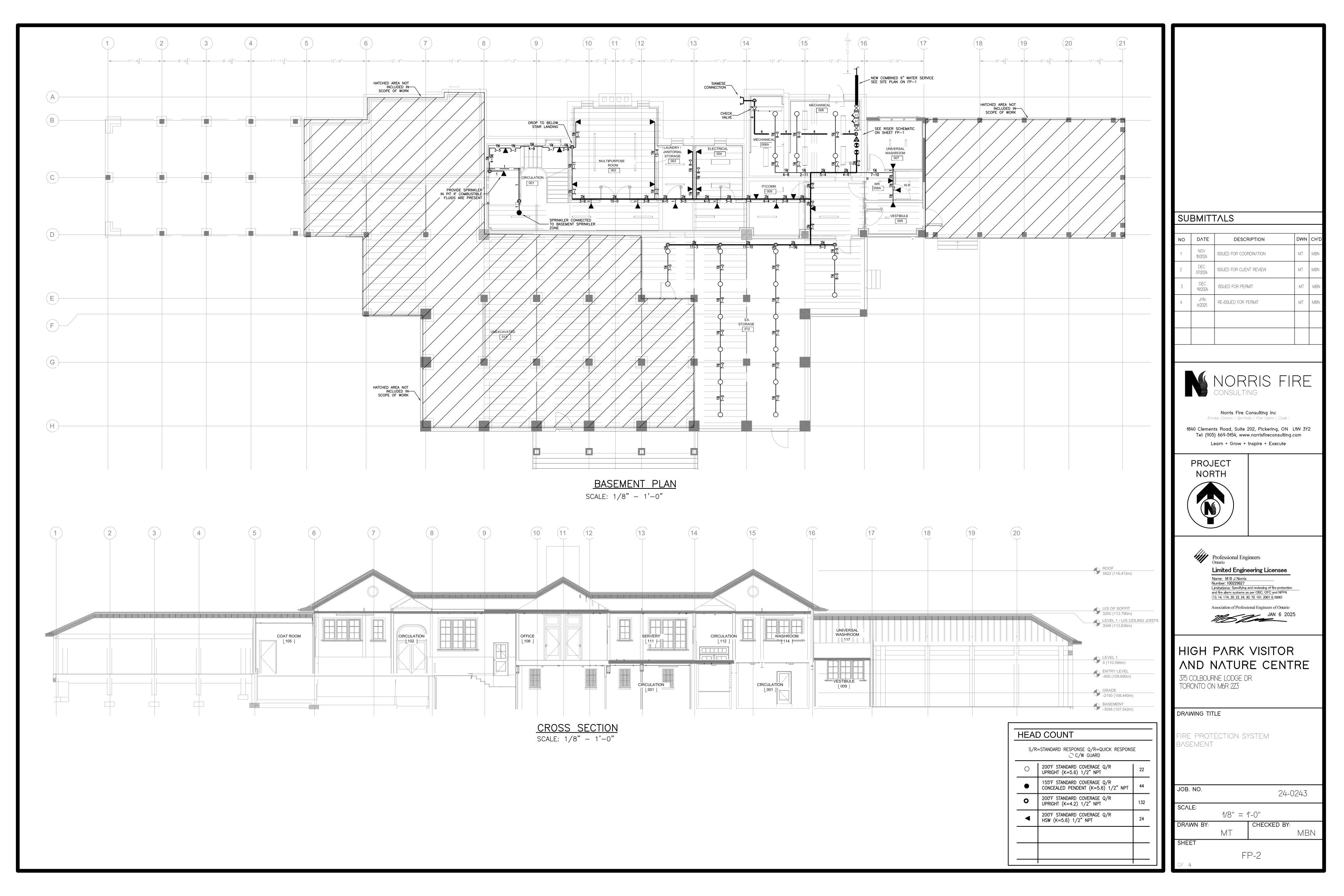
1840 Clements Road, Suite 202, Pickering, ON L1W 3Y2 Tel: (905) 669-5154; www.norrisfireconsulting.com Learn + Grow + Inspire + Execute

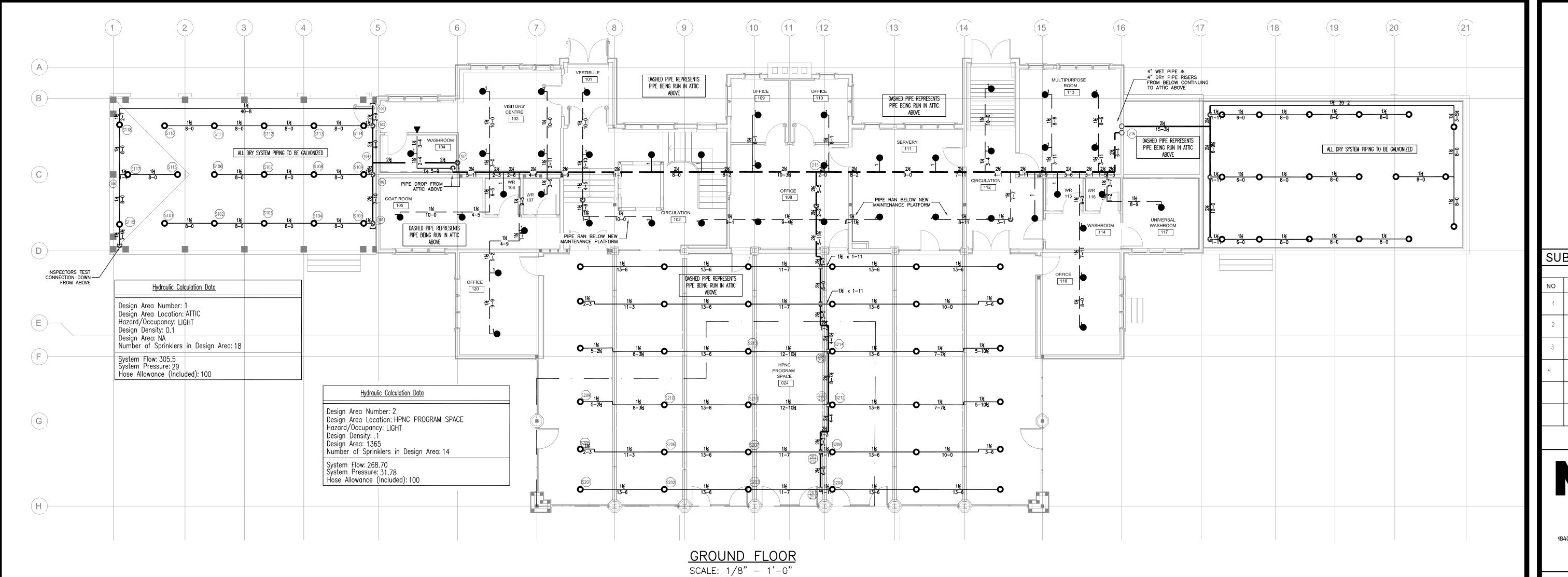
PROJECT

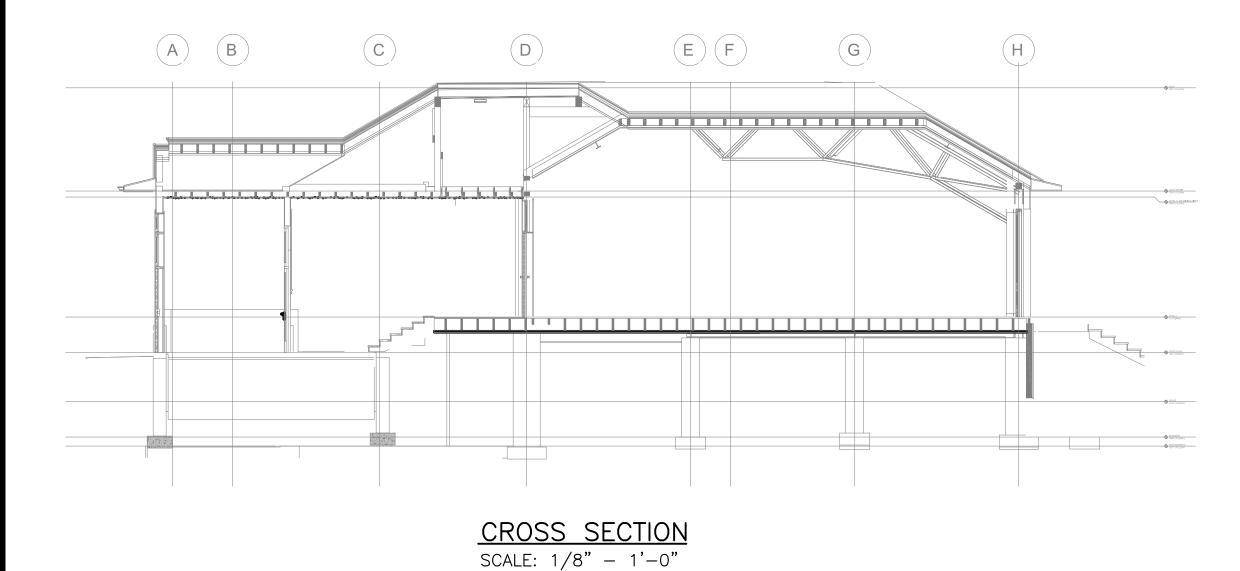
Limited Engineering Licensee Limitations: Specifying and reviewing of fire protection and fire alarm systems as per OBC, OFC and NFPA (13, 14, 17A, 20, 22, 24, 30, 70, 101, 2001 & 5000)

Association of Professional Engineers of Ontario JAN 6 2025

HIGH PARK VISITOR AND NATURE CENTRE


375 COLBOURNE LODGE DR. TORONTO ON M6R 2Z3


DRAWING TITLE


RE PROTECTION SYSTEM ENERAL NOTES, SITE LAN, & DETAILS

24-0243 1/8" = 1'-0" CHECKED BY: SHEET

FP-1

O COUNT						
=STANDARD RESPONSE Q/R=QUICK RESPONS ○ C/W GUARD	SE					
200°F STANDARD COVERAGE Q/R UPRIGHT (K=5.6) 1/2" NPT	22					
155°F STANDARD COVERAGE Q/R CONCEALED PENDENT (K=5.6) 1/2" NPT	44					
O 200°F STANDARD COVERAGE Q/R UPRIGHT (K=4.2) 1/2" NPT						
200°F STANDARD COVERAGE Q/R HSW (K=5.6) 1/2" NPT	24					
	=STANDARD RESPONSE Q/R=QUICK RESPONS C/W GUARD 200°F STANDARD COVERAGE Q/R UPRIGHT (K=5.6) 1/2" NPT 155°F STANDARD COVERAGE Q/R CONCEALED PENDENT (K=5.6) 1/2" NPT 200°F STANDARD COVERAGE Q/R UPRIGHT (K=4.2) 1/2" NPT 200°F STANDARD COVERAGE Q/R					

SUBMITTALS

DATE	DESCRIPTION	DWN	CH'D
NOV 10/2024	ISSUED FOR COORDINATION	MT	MBN
DEC 07/2024	ISSUED FOR CLIENT REVIEW	MT	MBN
DEC 19/2024	ISSUED FOR PERMIT	MT	MBN
JAN 6/2025	RE-ISSUED FOR PERMIT	MT	MBN
	NOV 10/2024 DEC 07/2024 DEC 19/2024	NOV 10/2024 ISSUED FOR COORDINATION DEC 07/2024 ISSUED FOR CLIENT REVIEW DEC 19/2024 ISSUED FOR PERMIT JAN REJISSUED FOR PERMIT	NOV 10/2024 ISSUED FOR COORDINATION MT DEC 07/2024 ISSUED FOR CLIENT REVIEW MT DEC 19/2024 ISSUED FOR PERMIT MT JAN REJSSLIED FOR PERMIT MT

Norris Fire Consulting Inc

1840 Clements Road, Suite 202, Pickering, ON L1W 3Y2 Tel: (905) 669-5154; www.norrisfireconsulting.com Learn + Grow + Inspire + Execute

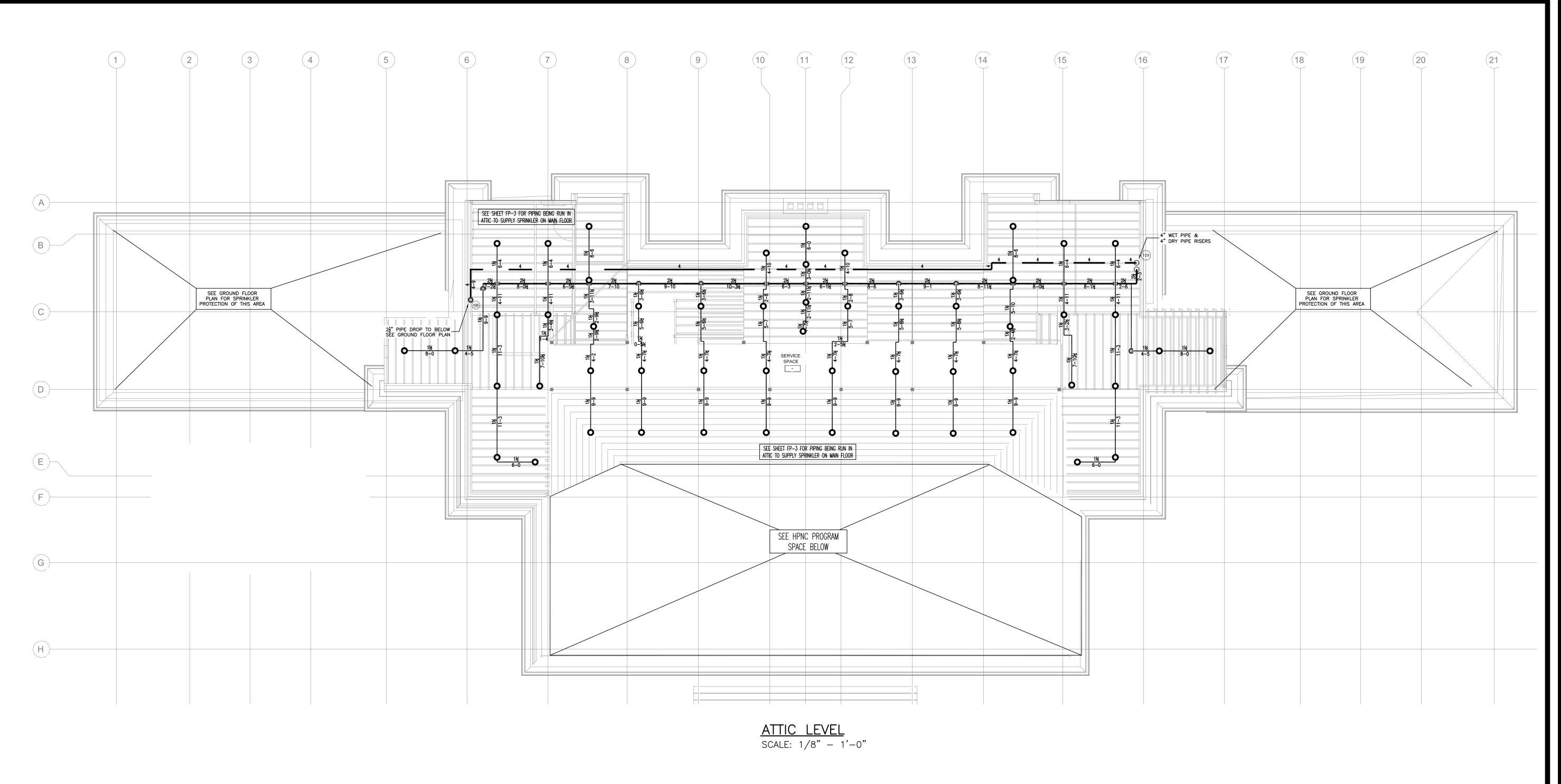
PROJECT NORTH

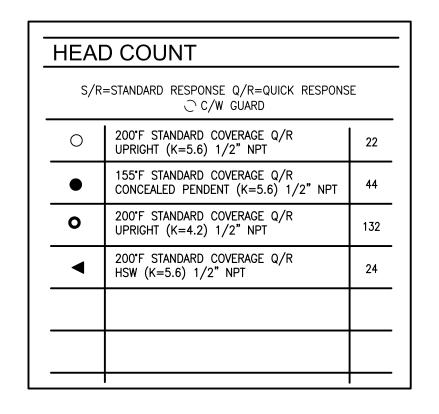
Limited Engineering Licensee Name: M B J Norris
Number: 100229827
Limitations: Specifying and reviewing of fire protection
and fire alarm systems as per OBC, OFC and NFPA
(13, 14, 17A, 20, 22, 24, 30, 70, 101, 2001 & 5000)

Association of Professional Engineers of Ontario

HIGH PARK VISITOR AND NATURE CENTRE

375 COLBOURNE LODGE DR. TORONTO ON M6R 2Z3


DRAWING TITLE


FIRE PROTECTION SYSTEM MAIN FLOOR

JOB. NO. 24-0243 1/8" = 1'-0" CHECKED BY: MBN

SHEET

FP-3

SUBMITTALS

NO	DATE	DESCRIPTION	DWN	CH,D
1	NOV 10/2024	ISSUED FOR COORDINATION	MT	MBN
2	DEC 07/2024	ISSUED FOR CLIENT REVIEW	MT	MBN
3	DEC 19/2024	ISSUED FOR PERMIT	MT	MBN
4	JAN 6/2025	RE-ISSUED FOR PERMIT	MT	MBN

Norris Fire Consulting Inc

1840 Clements Road, Suite 202, Pickering, ON L1W 3Y2
Tel: (905) 669-5154; www.norrisfireconsulting.com
Learn + Grow + Inspire + Execute

PROJECT NORTH

Name: M B J Norris
Number: 100229827
Limitations: Specifying and reviewing of fire protection and fire alarm systems as per OBC, OFC and NFPA (13, 14, 17A, 20, 22, 24, 30, 70, 101, 2001 & 5000)

Association of Professional Engineers of Ontario

JAN 6 2025

HIGH PARK VISITOR AND NATURE CENTRE

375 COLBOURNE LODGE DR. TORONTO ON M6R 2Z3

DRAWING TITLE

FIRE PROTECTION SYSTEM ATTIC LEVEL

JOB. NO. 24-0243 SCALE:

1/8" = 1'-0"

RAWN BY: CHECKED BY: MBN

SHEET FP-4

F |--

Professional Engineers Ontario

Limited Engineering Licensee

Name: M B J Norris Number: 100229827

Limitations: Specifying and reviewing of fire protection and fire alarm systems as per OBC, OFC and NFPA (13, 14, 17A, 20, 22, 24, 30, 70, 101, 2001 & 5000)

Association of Professional Engineers of Ontario

JAN 6 2025

Job Name : HIGH PARK VISITOR AND NATURE CENTRE

Drawing : FP-4

Location : 375 COLBOURNE LODGE DRIVE

Remote Area : 1

Contract : 24-0243

Data File : HIGH PARK Area 1 rev 2.WXF

Page 1

DEC 7 '24 Date

HYDRAULIC CALCULATIONS for

JOB NAME HIGH PARK VISITOR AND NATURE CENTRE

Location 375 COLBOURNE LODGE DRIVE

Drawing # FP-4 **Contract #** 24-0243 DEC 7 '24 Date

DESIGN

Remote area # 1

Remote area location ATTIC Occupancy classification LIGHT

Density 0.1 - Gpm/SqFt

Area of application NA - SqFt Coverage/sprinkler 120 - SqFt

Type of sprinkler calculated Q.R K=4.2

Sprinklers calculated 18

In-rack demand NA - GPM

Hose streams 100 - GPM

Total water required (including hose streams) 305.457 - GPM

@ 28.938 - Psi

Type of system DRY

Volume of system (dry or pre-action) 190 - Gal

WATER SUPPLY INFORMATION

Test date MAY 2 2023 **Location** HYDRANT ON SITE

Source of info HYDRANT FLOW TEST

CONTRACTOR INFO NORRIS FIRE CONSULTING

Address 1840 CLEMENTS RD SUITE 202 / PICKERING ON

905 669 5154 Phone # Name of designer M.T

Authority having jurisdiction CITY OF TORONTO

NOTES:

text1(35) - invisible

NORRIS FIRE CONSULTING HIGH PARK VISITOR AND NATURE CENTRE

2 DEC 7 '24

Page Date

5.630 205.457 28.938 100 305.457 30.748 Demand:
D1 - Elevation
D2 - System Flow
D2 - System Pressure
Hose (Demand)
D3 - System Demand :
Safety Margin 900 800 \ddot{c} 700 600 FLOW (N ^ 1.85) 500 400 City Water Supply:
C1 - Static Pressure : 67
C2 - Residual Pressure: 32
C2 - Residual Flow : 712 300 8 **D**2 100 200 김 2 R 110 150 140 130 100 120 90 80 U 70 R 60 20 40 30 20 Д Ш ഗ ഗ

Fittings Used Summary

NORRIS FIRE CONSULTING HIGH PARK VISITOR AND NATURE CENTRE

3 DEC 7 '24

Page Date

Fitting	=itting Legend Abbrev. Name	1/2	3,4 1	~	11/4	11/2	2	21/2	3	31/2	4	5	9	8	10	12	14	16	18	20	24
В	NFPA 13 Butterfly Valve	0	0	0	0	0	9	7	10	0	12	о	10	12	19	21	0	0	0	0	0
۵	Dry Rel D								28		28		47								
Ш	NFPA 13 90' Standard Elbow	_	7	7	က	4	2	9	7	∞	10	12	14	18	22	27	35	40	45	20	61
ტ	NFPA 13 Gate Valve	0	0	0	0	0	—	_	_	_	7	7	က	4	2	9	7	∞	9	7	13
_	NFPA 13 Long Turn Elbow	0.5	_	7	7	7	က	4	2	2	9	∞	6	13	16	18	24	27	30	34	40
_	NFPA 13 90' Flow thru Tee	က	4	2	9	∞	10	12	15	17	20	22	30	32	20	09	71	81	91	101	121
Zwh	Watts 757DCDA Horiz	Fitting	y gener	ates a F	Fitting generates a Fixed Loss Ba	ss Based	d on Flov	>													

Units Summary

Diameter Units Inches
Length Units Feet
Flow Units US Gallons per Minute
Pressure Units Pounds per Square Inch

supplied by manufacturers based on specific pipe diameters and CFactors and they require no Equivalent lengths shown are standard for actual diameters of Sched 40 pipe and CFactors Note: Fitting Legend provides equivalent pipe lengths for fittings types of various diameters. of 120 except as noted with * The fittings marked with a * show equivalent lengths values adjustment. All values for fittings not marked with a * will be adjusted in the calculation The diameter modification was turned off by the operator when the job was calculated. for CFactors of other than 120 and diameters other than Sched 40 per NFPA.

Page 4 Date D

DEC 7 '24

SUPPLY ANALYSIS

Node at Source	Static Pressure	Residual Pressure	Flow	Available Pressure	Total Demand	Required Pressure
HYD	67.0	32	712.0	59.686	305.46	28.938

NODE ANALYSIS

Node Tag	Elevation	Node Type	Pressure at Node	Discharge at Node	1	Notes	
S101	9.5	4.2	7.82	11.75	0.1	100	
S102	9.5	4.2	7.88	11.79	0.1	100	
S103	9.5	4.2	8.07	11.93	0.1	100	
S104	9.5	4.2	8.5	12.24	0.1	100	
S105	9.5	4.2	9.23	12.76	0.1	100	
S106	12.5	4.2	7.71	11.66	0.1	100	
S107	12.5	4.2	7.77	11.7	0.1	100	
S108	12.5	4.2	7.96	11.85	0.1	100	
S109	12.5	4.2	8.38	12.16	0.1	100	
S110	9.5	4.2	8.31	12.11	0.1	100	
S111	9.5	4.2	8.37	12.15	0.1	100	
S112	9.5	4.2	8.58	12.3	0.1	100	
S113	9.5	4.2	9.02	12.62	0.1	100	
S114	9.5	4.2	9.8	13.15	0.1	100	
S115	9.5	4.2	8.67	12.37	0.1	100	
S116	13.0	4.2	7.0	11.11	0.1	100	
S117	11.0	4.2	7.92	11.82	0.1	100	
106	9.5		8.74				
S118	9.5		8.81				
105	9.5		11.51				
103	9.5		11.53				
101	9.5		10.86				
102	9.5		10.99				
104	9.5		13.76				
107	9.5		16.47				
108	14.0		15.87				
109	14.0		17.81				
ATC	14.0		18.07				
FLG	- 6.0		31.35	100.0			
HYD	0.0		28.94	100.0			

NORRIS FIRE CONSULTING

Page Date 5 HIGH PARK VISITOR AND NATURE CENTRE DEC 7 '24

Node1	Elev1	К	Qa	Nom	Fitting		Pipe	CFact	Pt	****** Notoc *****
to Node2	Elev2	Fact	Qt	Act	or Eqiv	Len	Ftngs Total	Pf/Ft	Pe Pf	****** Notes *****
	ALENT I									
S101 to	9.500	4.20	11.75	1.5			8.000	100	7.821 0.0	
S102	9.500		11.75	1.682			8.000	0.0068	0.054	Vel = 1.70
S102 to	9.500	4.20	11.78	1.5			8.000	100	7.875 0.0	
_S103	9.500		23.53	1.682			8.000	0.0248	0.198	Vel = 3.40
S103 to	9.500	4.20	11.94	1.5			8.000	100	8.073 0.0	
S104	9.500		35.47	1.682			8.000	0.0528	0.422	Vel = 5.12
S104 to	9.500	4.20	12.24	1.5			8.000	100	8.495 0.0	
S105	9.500		47.71	1.682			8.000	0.0914	0.731	Vel = 6.89
S105 to	9.500	4.20	12.75	1.5	E T	2.855 5.71	3.000 8.565	100	9.226 0.0	
_101	9.500		60.46	1.682			11.565	0.1416	1.638	Vel = 8.73
101			0.0 60.46						10.864	K Factor = 18.34
S106 to	12.500	4.20	11.66	1.5			8.000	100	7.712 0.0	
S107	12.500		11.66	1.682			8.000	0.0068	0.054	Vel = 1.68
S107 to	12.500	4.20	11.71	1.5			8.000	100	7.766 0.0	
S108	12.500		23.37	1.682			8.000	0.0244	0.195	Vel = 3.37
S108 to	12.500	4.20	11.85	1.5			8.000	100	7.961 0.0	
S109	12.500		35.22	1.682			8.000	0.0521	0.417	Vel = 5.09
S109 to	12.500	4.20	12.16	1.5	E T	2.855 5.71	6.000 8.565	100	8.378 1.299	
_102	9.500		47.38	1.682			14.565	0.0902	1.314	Vel = 6.84
102			0.0 47.38						10.991	K Factor = 14.29
S110 to	9.500	4.20	12.11	1.5			8.000	100	8.309 0.0	
_S111	9.500		12.11	1.682			8.000	0.0072	0.058	Vel = 1.75
S111 to	9.500	4.20	12.15	1.5			8.000	100	8.367 0.0	
S112	9.500		24.26	1.682			8.000	0.0261	0.209	Vel = 3.50
S112 to	9.500	4.20	12.30	1.5			8.000	100	8.576 0.0	
S113	9.500		36.56	1.682			8.000	0.0559	0.447	Vel = 5.28
S113 to	9.500	4.20	12.61	1.5			8.000	100	9.023 0.0	
S114	9.500		49.17	1.682			8.000	0.0966	0.773	Vel = 7.10
S114 to	9.500	4.20	13.15	1.5	E T	2.855 5.71	3.000 8.565	100	9.796 0.0	
_103	9.500		62.32	1.682			11.565	0.1498	1.732	Vel = 9.00

NORRIS FIRE CONSULTING HIGH PARK VISITOR AND NATURE CENTRE Page 6 Date DEC 7 '24

Node1 to	Elev1	K	Qa	Nom	Fitting or		Pipe Ftngs	CFact	Pt Pe	****** Notes ****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf	140.00
103			62.32						11.528	K Factor = 18.35
S115	9.500	4.20	12.37	1.5			8.000	100	8.675 0.0	
o 106	9.500		12.37	1.682			8.000	0.0075	0.060	Vel = 1.79
			0.0				0.000	0.00.0	0.000	
106			12.37						8.735	K Factor = 4.19
S116	13	4.20	11.11	1.5			8.000	100	7.000	
o S117	11		11.11	1.682			8.000	0.0062	0.866 0.050	Vel = 1.60
S117	11	4.20	11.82	1.5	Т	5.71	1.500	100	7.916	
0					-		5.710		0.650	
106	9.500		22.93	1.682			7.210	0.0234	0.169	Vel = 3.31
106	9.500		12.37	1.5			1.500	100	8.735	
o S118	9.500		35.3	1.682			1.500	0.0527	0.0 0.079	Vel = 5.10
S118	9.500		0.0	1.5	E	2.855	43.000	100	8.814	V CI 0.10
0	0.000		0.0	1.0	T	5.71	8.565	100	0.0	
105	9.500		35.3	1.682			51.565	0.0523	2.698	Vel = 5.10
105	9.500		0.0	2.5			2.750	100	11.512	
o 103	9.500		35.3	2.635			2.750	0.0058	0.0 0.016	Vel = 2.08
103	9.500		170.16	2.5	Т	8.564	6.000	100	11.528	Vei - 2.00
0	3.500		170.10	2.5	•	0.504	8.564	100	0.0	
104	9.500		205.46	2.635			14.564	0.1529	2.227	Vel = 12.09
101			0.0						40.755	V 5t 55 40
104	0.500		205.46	0.5			0.000	400	13.755	K Factor = 55.40
101 o	9.500		60.46	2.5			8.000	100	10.864 0.0	
102	9.500		60.46	2.635			8.000	0.0159	0.127	Vel = 3.56
102	9.500		47.38	2.5	Т	8.564	3.000	100	10.991	
0	0.500		407.04	0.00=			8.564	0.0404	0.0	V I 004
103	9.500		107.84	2.635			11.564	0.0464	0.537	Vel = 6.34
103			0.0 107.84						11.528	K Factor = 31.76
104	9.500		205.46	2.5	E	4.282	13.500	100	13.755	1 1 4 4 5 1 . T U
0	5.500		200.40	2.0	_	7.202	4.282	100	0.0	
107	9.500		205.46	2.635			17.782	0.1529	2.719	Vel = 12.09
107	9.500		0.0	2.5	E	4.282	4.500	100	16.474	
o 108	14		205.46	2.635			4.282 8.782	0.1529	-1.949 1.343	Vel = 12.09
108	14		0.0	4	E	7.137	110.000	100	15.868	V GI - 12.U3
0	14		0.0	4	T	14.274	21.411	100	0.0	
109	14		205.46	4.26			131.411	0.0147	1.937	Vel = 4.62
109	14		0.0	4	Т	14.274	3.470	100	17.805	
0	4.4		205 42	4.00			14.274	0.0440	0.0	Val - 4.00
ATC	14		205.46	4.26		10.004	17.744	0.0148	0.262	Vel = 4.62
ATC o	14		0.0	4	D B	19.984 8.564	20.000 28.548	100	18.067 12.566	* * Fixed Loss = 3.904
FLG	- 6		205.46	4.26	Zwh	0.0	48.548	0.0147	0.715	Vel = 4.62

NORRIS FIRE CONSULTING HIGH PARK VISITOR AND NATURE CENTRE Page 7 Date DEC 7 '24

Node1 to Node2	Elev1 Elev2	K Fact	Qa Qt	Nom Act	Fitting or Eqiv	Len	Pipe Ftngs Total	CFact Pf/Ft	Pt Pe Pf	*****	Notes	*****
FLG	-6		0.0	6	4L	54.398	50.000	150	31.348			
to					Т	45.332	104.263		-2.599			
HYD	0		205.46	6.09	G	4.533	154.263	0.0012	0.189	Vel = 2	.26	
			100.00						·	Qa = 1	00.00	
HYD			305.46						28.938	K Factor	= 56.78	

Professional Engineers Ontario

Limited Engineering Licensee

Name: M B J Norris Number: 100229827

Limitations: Specifying and reviewing of fire protection and fire alarm systems as per OBC, OFC and NFPA (13, 14, 17A, 20, 22, 24, 30, 70, 101, 2001 & 5000)

Association of Professional Engineers of Ontario

Job Name : HIGH PARK VISITOR AND NATURE CENTRE

Drawing : FP-4

Location : 375 COLBOURNE LODGE DRIVE

Remote Area : 1

Contract : 24-0243

Data File : HIGH PARK Area 1 rev 2.WXF

Page 1

DEC 7 '24 Date

HYDRAULIC CALCULATIONS for

JOB NAME HIGH PARK VISITOR AND NATURE CENTRE

Location 375 COLBOURNE LODGE DRIVE

Drawing # FP-4 **Contract #** 24-0243 DEC 7 '24 Date

DESIGN

Remote area # 1

Remote area location ATTIC Occupancy classification LIGHT

Density 0.1 - Gpm/SqFt

Area of application NA - SqFt Coverage/sprinkler 120 - SqFt

Type of sprinkler calculated Q.R K=4.2

Sprinklers calculated 18

In-rack demand NA - GPM

Hose streams 100 - GPM

Total water required (including hose streams) 305.457 - GPM

@ 28.938 - Psi

Type of system DRY

Volume of system (dry or pre-action) 190 - Gal

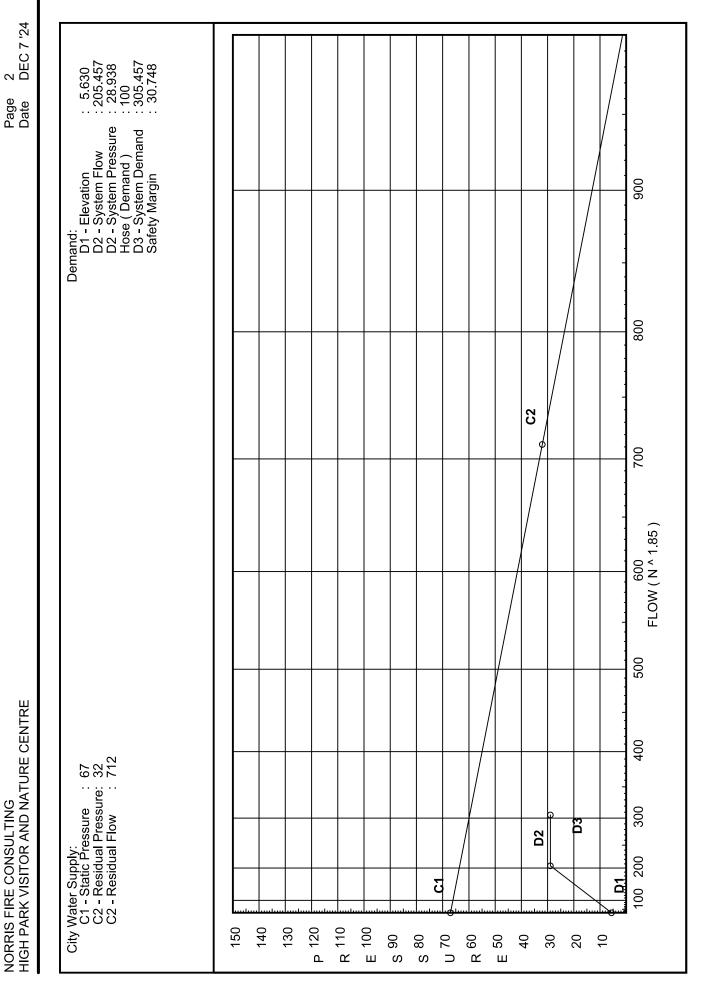
WATER SUPPLY INFORMATION

Test date MAY 2 2023 **Location** HYDRANT ON SITE

Source of info HYDRANT FLOW TEST

CONTRACTOR INFO NORRIS FIRE CONSULTING

Address 1840 CLEMENTS RD SUITE 202 / PICKERING ON


905 669 5154 Phone # Name of designer M.T

Authority having jurisdiction CITY OF TORONTO

NOTES:

text1(35) - invisible

NORRIS FIRE CONSULTING HIGH PARK VISITOR AND NATURE CENTRE

Fittings Used Summary

NORRIS FIRE CONSULTING HIGH PARK VISITOR AND NATURE CENTRE

3 DEC 7 '24

Page Date

Fitting I. Abbrev.	Fitting Legend Abbrev. Name	1/2	3,4	_	1/2 3/4 1 11/4 1	11/2	2	21/2	3	31/2	4	5	9	8	10	12	14	16	18	20	24
В	NFPA 13 Butterfly Valve	0	0	0 0	0	0	9	7	10	0	12	6	10	12	19	21	0	0	0	0	0
۵	Dry Rel D								28		28		47								
Ш	NFPA 13 90' Standard Elbow	_	7	7	က	4	2	9	7	œ	10	12	4	18	22	27	35	40	45	20	61
ტ	NFPA 13 Gate Valve	0	0	0	0	0	-	-	_	-	7	7	က	4	2	9	7	œ	10	7	13
_	NFPA 13 Long Turn Elbow	0.5	_	7	7	7	က	4	2	2	9	_∞	6	13	16	18	24	27	30	34	40
_	NFPA 13 90' Flow thru Tee	က	4	2	9	∞	10	12	15	17	20	25	30	35	20	09	71	81	91	101	121
Zwh	Watts 757DCDA Horiz	Fitting	g gener	ates a F	Fitting generates a Fixed Loss Based	s Based	on Flov	>													

Units Summary

Diameter Units Inches
Length Units Feet
Flow Units US Gallons per Minute
Pressure Units Pounds per Square Inch

supplied by manufacturers based on specific pipe diameters and CFactors and they require no Equivalent lengths shown are standard for actual diameters of Sched 40 pipe and CFactors Note: Fitting Legend provides equivalent pipe lengths for fittings types of various diameters. of 120 except as noted with * The fittings marked with a * show equivalent lengths values adjustment. All values for fittings not marked with a * will be adjusted in the calculation The diameter modification was turned off by the operator when the job was calculated. for CFactors of other than 120 and diameters other than Sched 40 per NFPA.

Page 4 Date D

DEC 7 '24

SUPPLY ANALYSIS

Node at Source	Static Pressure	Residual Pressure	Flow	Available Pressure	Total Demand	Required Pressure
HYD	67.0	32	712.0	59.686	305.46	28.938

NODE ANALYSIS

Node Tag	Elevation	Node Type	Pressure at Node	Discharge at Node	,	Votes	
S101	9.5	4.2	7.82	11.75	0.1	100	
S102	9.5	4.2	7.88	11.79	0.1	100	
S103	9.5	4.2	8.07	11.93	0.1	100	
S104	9.5	4.2	8.5	12.24	0.1	100	
S105	9.5	4.2	9.23	12.76	0.1	100	
S106	12.5	4.2	7.71	11.66	0.1	100	
S107	12.5	4.2	7.77	11.7	0.1	100	
S108	12.5	4.2	7.96	11.85	0.1	100	
S109	12.5	4.2	8.38	12.16	0.1	100	
S110	9.5	4.2	8.31	12.11	0.1	100	
S111	9.5	4.2	8.37	12.15	0.1	100	
S112	9.5	4.2	8.58	12.3	0.1	100	
S113	9.5	4.2	9.02	12.62	0.1	100	
S114	9.5	4.2	9.8	13.15	0.1	100	
S115	9.5	4.2	8.67	12.37	0.1	100	
S116	13.0	4.2	7.0	11.11	0.1	100	
S117	11.0	4.2	7.92	11.82	0.1	100	
106	9.5		8.74				
S118	9.5		8.81				
105	9.5		11.51				
103	9.5		11.53				
101	9.5		10.86				
102	9.5		10.99				
104	9.5		13.76				
107	9.5		16.47				
108	14.0		15.87				
109	14.0		17.81				
ATC	14.0		18.07				
FLG	-6.0		31.35				
HYD	0.0		28.94	100.0			

NORRIS FIRE CONSULTING

Page Date 5 HIGH PARK VISITOR AND NATURE CENTRE DEC 7 '24

Node1	Elev1	К	Qa	Nom	Fitting		Pipe	CFact	Pt	****** Notoc *****
to Node2	Elev2	Fact	Qt	Act	or Eqiv	Len	Ftngs Total	Pf/Ft	Pe Pf	****** Notes *****
	ALENT I									
S101 to	9.500	4.20	11.75	1.5			8.000	100	7.821 0.0	
S102	9.500		11.75	1.682			8.000	0.0068	0.054	Vel = 1.70
S102 to	9.500	4.20	11.78	1.5			8.000	100	7.875 0.0	
_S103	9.500		23.53	1.682			8.000	0.0248	0.198	Vel = 3.40
S103 to	9.500	4.20	11.94	1.5			8.000	100	8.073 0.0	
S104	9.500		35.47	1.682			8.000	0.0528	0.422	Vel = 5.12
S104 to	9.500	4.20	12.24	1.5			8.000	100	8.495 0.0	
S105	9.500		47.71	1.682			8.000	0.0914	0.731	Vel = 6.89
S105 to	9.500	4.20	12.75	1.5	E T	2.855 5.71	3.000 8.565	100	9.226 0.0	
_101	9.500		60.46	1.682			11.565	0.1416	1.638	Vel = 8.73
101			0.0 60.46						10.864	K Factor = 18.34
S106 to	12.500	4.20	11.66	1.5			8.000	100	7.712 0.0	
S107	12.500		11.66	1.682			8.000	0.0068	0.054	Vel = 1.68
S107 to	12.500	4.20	11.71	1.5			8.000	100	7.766 0.0	
S108	12.500		23.37	1.682			8.000	0.0244	0.195	Vel = 3.37
S108 to	12.500	4.20	11.85	1.5			8.000	100	7.961 0.0	
S109	12.500		35.22	1.682			8.000	0.0521	0.417	Vel = 5.09
S109 to	12.500	4.20	12.16	1.5	E T	2.855 5.71	6.000 8.565	100	8.378 1.299	
_102	9.500		47.38	1.682			14.565	0.0902	1.314	Vel = 6.84
102			0.0 47.38						10.991	K Factor = 14.29
S110 to	9.500	4.20	12.11	1.5			8.000	100	8.309 0.0	
_S111	9.500		12.11	1.682			8.000	0.0072	0.058	Vel = 1.75
S111 to	9.500	4.20	12.15	1.5			8.000	100	8.367 0.0	
S112	9.500		24.26	1.682			8.000	0.0261	0.209	Vel = 3.50
S112 to	9.500	4.20	12.30	1.5			8.000	100	8.576 0.0	
S113	9.500		36.56	1.682			8.000	0.0559	0.447	Vel = 5.28
S113 to	9.500	4.20	12.61	1.5			8.000	100	9.023 0.0	
S114	9.500		49.17	1.682			8.000	0.0966	0.773	Vel = 7.10
S114 to	9.500	4.20	13.15	1.5	E T	2.855 5.71	3.000 8.565	100	9.796 0.0	
_103	9.500		62.32	1.682			11.565	0.1498	1.732	Vel = 9.00

Page Date 6

DEC 7 '24

Node1 to	Elev1	K	Qa	Nom	Fitting or		Pipe Ftngs	CFact	Pt Pe	****** Notes *****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf	Notes
_103			62.32						11.528	K Factor = 18.35
S115 to	9.500	4.20	12.37	1.5			8.000	100	8.675 0.0	
106	9.500		12.37	1.682			8.000	0.0075	0.060	Vel = 1.79
			0.0							
_106			12.37						8.735	K Factor = 4.19
S116 to	13	4.20	11.11	1.5			8.000	100	7.000 0.866	
เบ S117	11		11.11	1.682			8.000	0.0062	0.050	Vel = 1.60
S117	11	4.20	11.82	1.5	Т	5.71	1.500	100	7.916	
to 106	9.500		22.93	1.682			5.710 7.210	0.0234	0.650 0.169	Vel = 3.31
106	9.500		12.37	1.5			1.500	100	8.735	Vei - 3.31
to									0.0	
_S118	9.500		35.3	1.682			1.500	0.0527	0.079	Vel = 5.10
S118 to	9.500		0.0	1.5	E T	2.855 5.71	43.000 8.565	100	8.814 0.0	
105	9.500		35.3	1.682	-	5.7 1	51.565	0.0523	2.698	Vel = 5.10
105	9.500		0.0	2.5			2.750	100	11.512	
to	9.500		35.3	2.635			2.750	0.0059	0.0 0.016	Val = 2.00
103	9.500		170.16	2.635		8.564	2.750 6.000	0.0058 100	11.528	Vel = 2.08
to	3.500		170.10	2.0	Ī	0.504	8.564	100	0.0	
_104	9.500		205.46	2.635			14.564	0.1529	2.227	Vel = 12.09
104			0.0 205.46						13.755	K Factor = 55.40
101	9.500		60.46	2.5			8.000	100	10.864	N 1 actor = 33.40
to									0.0	
102	9.500		60.46	2.635			8.000	0.0159	0.127	Vel = 3.56
102 to	9.500		47.38	2.5	Т	8.564	3.000 8.564	100	10.991 0.0	
103	9.500		107.84	2.635			11.564	0.0464	0.537	Vel = 6.34
			0.0							
103	0.500		107.84	0.5	_	4.000	40.500	400	11.528	K Factor = 31.76
104 to	9.500		205.46	2.5	E	4.282	13.500 4.282	100	13.755 0.0	
107	9.500		205.46	2.635			17.782	0.1529	2.719	Vel = 12.09
107	9.500		0.0	2.5	Е	4.282	4.500	100	16.474	
to 108	14		205.46	2.635			4.282 8.782	0.1529	-1.949 1.343	Vel = 12.09
108	14		0.0	4	E	7.137	110.000	100	15.868	. 51
to					T	14.274	21.411		0.0	
109	14		205.46	4.26		44074	131.411	0.0147	1.937	Vel = 4.62
109 to	14		0.0	4	Τ	14.274	3.470 14.274	100	17.805 0.0	
ATC	14		205.46	4.26			17.744	0.0148	0.262	Vel = 4.62
ATC	14		0.0	4	D	19.984	20.000	100	18.067	
to FLG	- 6		205.46	4.26	B Zwh	8.564 0.0	28.548 48.548	0.0147	12.566 0.715	* * Fixed Loss = 3.904 Vel = 4.62
1 20	-0		200.70	7.20	∠ vvi i	0.0	70.0 7 0	0.0141	0.7 10	V SI - 7.02

NORRIS FIRE CONSULTING HIGH PARK VISITOR AND NATURE CENTRE Page Date DEC 7 '24

7

Node1 to Node2	Elev1 Elev2	K Fact	Qa Qt	Nom Act	Fitting or Eqiv	Len	Pipe Ftngs Total	CFact Pf/Ft	Pt Pe Pf	*****	Notes	*****
FLG to	- 6		0.0	6	4L T	54.398 45.332	50.000 104.263	150	31.348 -2.599			
HYD	0		205.46	6.09	G	4.533	154.263	0.0012	0.189	Vel = 2	2.26	
HYD			100.00 305.46						28.938	Qa = 1 K Facto	00.00 r = 56.78	